Krylov Subspace Descent for Deep Learning

نویسندگان

  • Oriol Vinyals
  • Daniel Povey
چکیده

In this paper, we propose a second order optimization method to learn models where both the dimensionality of the parameter space and the number of training samples is high. In our method, we construct on each iteration a Krylov subspace formed by the gradient and an approximation to the Hessian matrix, and then use a subset of the training data samples to optimize over this subspace. As with the Hessian Free (HF) method of Martens (2010), the Hessian matrix is never explicitly constructed, and is computed using a subset of data. In practice, as in HF, we typically use a positive definite substitute for the Hessian matrix such as the Gauss-Newton matrix. We investigate the effectiveness of our proposed method on deep neural networks, and compare its performance to widely used methods such as stochastic gradient descent, conjugate gradient descent and L-BFGS, and also to HF. Our method leads to faster convergence than either L-BFGS or HF, and generally performs better than either of them in cross-validation accuracy. It is also simpler and more general than HF, as it does not require a positive semidefinite approximation of the Hessian matrix to work well nor the setting of a damping parameter. The chief drawback versus HF is the need for memory to store a basis for the Krylov subspace.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revisiting Natural Gradient for Deep Networks

We evaluate natural gradient, an algorithm originally proposed in Amari (1997), for learning deep models. The contributions of this paper are as follows. We show the connection between natural gradient and three other recently proposed methods: Hessian-Free (Martens, 2010), Krylov Subspace Descent (Vinyals and Povey, 2012) and TONGA (Le Roux et al., 2008). We empirically evaluate the robustness...

متن کامل

Conjugate Directions for Stochastic Gradient Descent

The method of conjugate gradients provides a very effective way to optimize large, deterministic systems by gradient descent. In its standard form, however, it is not amenable to stochastic approximation of the gradient. Here we explore ideas from conjugate gradient in the stochastic (online) setting, using fast Hessian-gradient products to set up low-dimensional Krylov subspaces within individ...

متن کامل

Combining Conjugate Direction Methods with Stochastic Approximation of Gradients

The method of conjugate directions provides a very effective way to optimize large, deterministic systems by gradient descent. In its standard form, however, it is not amenable to stochastic approximation of the gradient. Here we explore ideas from conjugate gradient in the stochastic (online) setting, using fast Hessian-gradient products to set up low-dimensional Krylov subspaces within indivi...

متن کامل

Avoiding communication in primal and dual block coordinate descent methods

Primal and dual block coordinate descent methods are iterative methods for solving regularized and unregularized optimization problems. Distributed-memory parallel implementations of these methods have become popular in analyzing large machine learning datasets. However, existing implementations communicate at every iteration which, on modern data center and supercomputing architectures, often ...

متن کامل

Avoiding Synchronization in First-Order Methods for Sparse Convex Optimization

Parallel computing has played an important role in speeding up convex optimization methods for big data analytics and large-scale machine learning (ML). However, the scalability of these optimization methods is inhibited by the cost of communicating and synchronizing processors in a parallel setting. Iterative ML methods are particularly sensitive to communication cost since they often require ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012